Improving Fusion of Surveillance Images in Sensor Networks Using Independent Component Analysis
نویسندگان
چکیده
منابع مشابه
Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملImproving Independent Component Analysis Using Support Vector Machines for Multimodal Image Fusion
The objective of this study is to combine multiple images of a scene acquired by different sensors to create a new image with all important information from the input images. Recent studies show that bases trained using Independent Component Analysis (ICA) is effective in multisensor fusion and has improved performance over traditional wavelet approaches. In the ICA based fusion, the coefficien...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Independent Component Analysis in Angiography Images
An important source for information about digital image content is the texture of image regions. This paper presents a feature extraction approach that is based on independent component analysis (ICA). In ICA a transformation of measured vectored time series is discovered via blind signal processing that gives statistically independent source signals. In our approach every textured region is co...
متن کاملoutlier detection in wireless sensor networks using distributed principal component analysis
detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (wsns). to address the problem of outlier detection in wireless sensor networks, in this paper we present a pca-based centralized approach and a dpca-based distributed energy-efficient approach for detecting outliers in sensed data in a wsn. the outliers in sensed data can be ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Consumer Electronics
سال: 2007
ISSN: 0098-3063
DOI: 10.1109/tce.2007.4341582